Sipeed continue dans sa course à l’échalote des kit FPGA low cost en proposant un kit Gowin à $4.90. Évidemment à ce prix là c’était trop tentant d’en prendre un. Bon en vrai vu que les frais de port ne sont pas négligeable j’ai également pris l’écran proposé et je m’en suis finalement sortie pour une vingtaine d’€. Ce qui reste néanmoins raisonnable.
Le kit est fourni avec des headers males (pattes) non soudés. Ils ne sont pas nécessaire pour faire clignoter la LED ou pour jouer avec l’écran, mais c’est quand même utile.
Premier boulot en recevant le truc donc : souder les headers.
Le FPGA soudé sur la carte est un GW1N-LV1, assez petit donc, mais il reste raisonnable puisque de la même taille que le ice40 soudé sur le icestick. C’est d’ailleurs le kit utilisé actuellement par Pepijn de Vos son projet d’ingénierie inverse nommé Apicula (mais chuuut le projet n’est pas encore public !).
Le branchement se fait au moyen d’un câble USB-C non fourni. Au premier branchement, la LED rouge qui semble être celle de l’alimentation s’allume et la led RGB du centre se met à clignoter en allumant les trois couleurs à la suite.
Les messages noyau m’affichent le traditionnel double tty typique d’un convertisseur USB-Série habituel (CH552T, un microcontrôleur chinois):
$ sudo dmesg -c
[365812.686837] usb 3-2: new full-speed USB device number 25 using xhci_hcd
[365812.838484] usb 3-2: New USB device found, idVendor=0403, idProduct=6010, bcdDevice= 5.00
[365812.838490] usb 3-2: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[365812.838492] usb 3-2: Product: Sipeed-Debug
[365812.838494] usb 3-2: Manufacturer: Kongou Hikari
[365812.838496] usb 3-2: SerialNumber: 85522A1A47
[365812.840468] ftdi_sio 3-2:1.0: FTDI USB Serial Device converter detected
[365812.840534] usb 3-2: Detected FT2232C
[365812.841192] usb 3-2: FTDI USB Serial Device converter now attached to ttyUSB0
[365812.841373] ftdi_sio 3-2:1.1: FTDI USB Serial Device converter detected
[365812.841427] usb 3-2: Detected FT2232C
[365812.841727] usb 3-2: FTDI USB Serial Device converter now attached to ttyUSB1
On remarquera que cette fois le numéro de série n’est pas en chinois 😉
La connexion au ttyUSB0 (en 115200) fournie un echo du clavier un peu bizarre :
Il est fort probable que le kit soit entièrement utilisable avec des logiciels libre à Noël lors de la grand messe allemande : le Chaos Communication Congress à Liepnitz.
Pour le moment nous allons nous contenter de l’IDE chinois fourni, que j’avais déjà installé pour le little bee. Pour le code, il y a des exemples fournis sur le github de sipeed. Pour la documentation c’est par ici. Et comme d’habitude avec les trucs chinois, quand la doc en anglais semble trop limitée, ne pas hésiter à aller faire un tour sur la version chinoise à coup de google traduction.
Trucs:
Si le floorplanning ne veut pas se lancer c’est qu’il faut bien configurer sa variable LD_LIBRARY_PATH avant de lancer l’appli:
J’en avait déjà parlé dans les colonnes de ce blog. Une nouvelle société produit un FPGA nommé Trion T8. Ce FPGA est la base d’une petite carte de développement proposée par les HongKongais de XIPS Technology sur le site crowdsupply.
Évidemment je n’ai pas résisté à participer à la campagne. Quelques manifestations à HongKong et quelques déboire avec Fedex puis Mondial Relais, voici enfin le kit tant attendu arrivé chez moi.
Le kit est arrivé dans un énorme carton, mais c’est presque habituel dans ce genre de cas. J’avais pris sans les headers soudés mais ils sont tout de même fournis. J’ai juste eu à les souder moi même.
Au branchement une led rouge qui semble être celle de l’alimentation s’allume. Les 4 LED oranges se mettent elles à compter en binaire.
Dans les messages noyau nous avons la traditionnelle interface ttyUSB0 du FTDI :
$ dmesg
[97997.987953] usb 3-1: USB disconnect, device number 11
[97997.988359] ftdi_sio ttyUSB0: FTDI USB Serial Device converter now disconnected from ttyUSB0
[97997.988397] ftdi_sio 3-1:1.0: device disconnected
[98000.296737] usb 3-1: new high-speed USB device number 12 using xhci_hcd
[98000.445226] usb 3-1: New USB device found, idVendor=0403, idProduct=6014, bcdDevice= 9.00
[98000.445231] usb 3-1: New USB device strings: Mfr=1, Product=2, SerialNumber=0
[98000.445233] usb 3-1: Product: Single RS232-HS
[98000.445235] usb 3-1: Manufacturer: FTDI
[98000.446052] ftdi_sio 3-1:1.0: FTDI USB Serial Device converter detected
[98000.446118] usb 3-1: Detected FT232H
[98000.446278] usb 3-1: FTDI USB Serial Device converter now attached to ttyUSB0
J’avais déjà reçu la license de la part de Efinix et Xips technology, du coup mon blinking led design était près à télécharger. Le bitstream est au format *.hex et se flash super facilement avec le Efinity programmer (tools -> programmer).
Par contre ma led ne clignote pas, je pense avoir encore quelques soucis avec les configs d’I/O et de PLL pour l’instant. Je doit encore me former à l’Efinity Interface Designer de Efinix qui est assez déroutant par rapport aux autres IDE.
[edit 28/01/2022]
Il est possible de charger le bitstream avec openFPGALoader sans problème de nos jours :
$ openFPGALoader -b fireant counter/outflow/counter.hex
Jtag frequency : requested 6.00MHz -> real 6.00MHz
Parse file DONE
Detail:
Jedec ID : ef
memory type : 40
memory capacity : 14
00
Detail:
Jedec ID : ef
memory type : 40
memory capacity : 14
flash chip unknown: use basic protection detection
Erasing: [==================================================] 100.00%
Done
Writing: [==================================================] 100.00%
Done
Wait for CDONE DONE
Arrow propose un kit de développement nommé AnalogMax pour 80$ environ. L’entreprise qui fabrique la carte est Trenz Electronic qui réalise également le kit gowin.
Le FPGA est relativement gros et la carte possède un certain nombre de périphérique analogiques sympathique comme un détecteur de fumée, un capteur de température, quelque canaux ADC et DAC ainsi que des GPIO.
Au branchement du kit sur l’usb on a juste la led verte allumée. L’appuie sur le bouton à droite allume une des huit leds de la rangée, et l’appui sur l’autre bouton allume l’autre led rouge et inscrit un message sur l’uart (115200):
Je viens donc de recevoir ma carte petite abeille (littlebee) munie d’un FPGA du chinois GOWIN.
La carte produite et vendue par la société allemande Trenz Electronic permet de se faire la main avec le composant pour moins de 40€ (un peu plus avec les frais de ports UPS …).
Branchement
Au branchement à la sortie du carton les huit leds rouge s’allument ainsi qu’une led verte que je suppose de «power».
Les messages noyau nous donnent deux ports séries ttyUSBx :
$ dmesg [630417.919258] usb 3-1: new high-speed USB device number 35 using xhci_hcd [630418.059577] usb 3-1: New USB device found, idVendor=0403, idProduct=6010 [630418.059581] usb 3-1: New USB device strings: Mfr=1, Product=2, SerialNumber=0 [630418.059583] usb 3-1: Product: Dual RS232-HS [630418.059584] usb 3-1: Manufacturer: FTDI [630418.060116] ftdi_sio 3-1:1.0: FTDI USB Serial Device converter detected [630418.060155] usb 3-1: Detected FT2232H [630418.060352] usb 3-1: FTDI USB Serial Device converter now attached to ttyUSB0 [630418.060499] ftdi_sio 3-1:1.1: FTDI USB Serial Device converter detected [630418.060528] usb 3-1: Detected FT2232H [630418.060648] usb 3-1: FTDI USB Serial Device converter now attached to ttyUSB1
Si on se connecte au port série ttyUSB1 on obtient un affichage de la résolution du problème des philosophes.
Philosopher 0 [P: 3] THINKING [ 750 ms ] Philosopher 1 [P: 2] HOLDING ONE FORK Philosopher 2 [P: 1] EATING [ 450 ms ] Philosopher 3 [P: 0] STARVING nabled Philosopher 4 [C:-1] HOLDING ONE FORK get back, Philosopher 5 [C:-2] EATING [ 375 ms ]
Il est probable que nous ayons ici un RISC-V dans le tiroir.
La connexion d’un terminal sur le port ttyUSB0 ne donne rien par contre.
IDE
Voila pour le déballage, maintenant il va falloir installer les outils pour faire clignoter ces leds !
FireAnt est un kit de développement «de la taille d’un pouce» concu par la société Xips Technology et permettant de se faire la main sur le FPGA Trion T8 de la société Efinix.
Et bien sûr un LDO pour l’alimentation 3v3 à partir de l’USB
Efinix est une toute nouvelle société qui propose des petits FPGA gravés en 40nm. Pour les tout petits FPGA de leur gamme, la société propose ce qu’elle appelle un MPM pour «Mask Programmable Memory» -> la possibilité de figer le design en usine et de ne plus avoir à configurer le FPGA à chaque démarrage.
Un IDE permettant de faire la synthèse, le placement-routage et le bitstream est fourni «gratuitement». À condition de posséder un kit de développement (J’ai beau négocier, ils ne veulent pas me le donner tant que je n’aurais pas reçu le kit 😉 ).
Bref, il n’est pas encore question d’outils libres pour ces FPGA pour l’instant. Cependant, ça fait du bien de voir de nouveaux acteurs dans le domaine des FPGA «physique».
Wavedrom est un outils magique pour générer de très beaux chronogrammes à partir d’une base texte (JSON). Il existe un outils en ligne de commande pour générer des rendu en SVG ou PNG. Cependant, Wavedrom reste très lié au web, pas facile de l’intégrer dans un document wysiwyg comme libreoffice.
On peut bien sûr générer l’image puis l’intégrer à son document, mais cela éparpille très vite le nombre de fichiers source à gérer. Or, un des intérêt d’un document libreoffice est d’inclure toute les sources permettant de générer et modifier le document.
L’idéal serait d’avoir un plugin Libreoffice pour wavedrom, mais pour l’instant cela n’existe pas.
Cette solution nécessite d’avoir un accès web et de faire son chronograme avec l’éditeur en ligne de wavedrom. Cet éditeur permet de «stocker» la description du chronograme dans l’URL. Il suffit pour cela de cliquer sur le menu sandwich en bas à droite et de sélectionner «expand url» pour avoir le contenu du chronogramme dans l’url comme ceci.
Il n’est pas utile de comprendre ce qui est écrit dans l’url, il suffit de cliquer dessus pour avoir le texte «lisible».
Pour l’intégrer à son document libreoffice il suffit de:
générer l’image dans le format de son choix avec l’éditeur en ligne
de l’intégrer à son document libreoffice
Puis de faire un lien web sur l’image avec l’url complète contenant le source du chronograme.
De cette manière, le source du chronogramme est bien embarqué dans le document. Il faudra certe refaire une manip légèrement fastidieuse à chaque modification, mais nous avons tout de même une solution viable.
La société chinoise SiPeed propose un kit de développement permettant d’évaluer le FPGA chinois EG4S20BG256 produit par Anlogic. Le kit peut être commandé pour une vingtaine de dollars sur le site de vente en ligne Seeed spécialisé dans les kits de développement en électronique «grand public».
Au branchement du kit Debian/Linux détecte un convertisseur USB-JTAG de chez Anlogic:
$ sudo dmesg -c [30017.300586] usb 3-2: new full-speed USB device number 5 using xhci_hcd [30017.441796] usb 3-2: New USB device found, idVendor=0547, idProduct=1002 [30017.441801] usb 3-2: New USB device strings: Mfr=1, Product=2, SerialNumber=0 [30017.441804] usb 3-2: Product: USB-JTAG-Cable [30017.441807] usb 3-2: Manufacturer: Anlogic
L’environnement de développement est disponible en téléchargement (~100Mo) sous forme d’une archive rar ici. Le fichier se décompresse avec la commande unrar:
$ unrar x ../TD_RELEASE_SEPTEMBER2018_RHEL.rar
Il faut ensuite mettre en exécutable le répertoire bin:
$ chmod +x bin/*
Et on peut ensuite lancer l’IDE:
$ cd bin ; ./td -gui
La fenêtre suivante s’ouvre alors :
C’est l’environement de développement le plus simple à installer que j’ai pu voir depuis que je bricole des FPGA. Même si la procédure d’installation est quand même étrange (un obscure .rar à télécharger puis à décompresser).
Pour synthétiser un premier design on va avoir besoin d’un minimum de documentation sur la schématique de la carte ainsi que sur le pinout du FPGA. On trouvera les schémas du kit en format pdf ici.
On trouve des exemples de code pour le kit sur github, notamment pour faire clignoter une led. La base du Hello World en électronique.
Pour tester la led qui clignote on crée un nouveau projet avec le fpga EG4S20BG256. On ajoute ensuite le source pour la led se trouvant dans le répertoire Tang_FPGA_Examples/0.LED/src/led.v
L’extension du fichiers de contrainte est en *.adc pour l’exemple de led le fichier se trouve dans le répertoire Tang_FPGA_Examples/0.LED/constraint/io.adc
Une fois les deux fichiers ci-dessus ajouté à notre projet on peut lancer la procédure complète pour générer le bitstream en double-cliquant sur l’icône «Generate Bitstream» dans l’encart «FPGA Flow» de l’ide.
La génération du bitstream est très rapide. Pour le télécharger ensuite dans le FPGA il faut bien sûr que le kit soit connecté à l’usb.
Le configurateur se lance en allant dans le menu Tools -> Download.
Chez moi j’ai du lancer l’ide en sudo pour éviter un plantage fatal, à ce moment. Le configurateur se présente comme ci-dessous :
Il faut ajouter le fichier bitstream au moyen du bouton de gauche «Add» puis cliquer sur la ligne du tableur pour «dégriser» le bouton «run», qui permet de télécharger le bitstream pour configurer le FPGA.
Pour conclure, je pensais beaucoup plus souffrir à mettre en route ce kit à la documentation majoritairement en chinois. Mais la note de blog de JAEB et le projet d’exemples sur github m’ont beaucoup aidé à faire clignoter cette led tricolore rapidement. À l’avenir il faudra regarder si ce FPGA est vraiment nouveau ou si ça n’est pas une copie d’un constructeur bien connu. On doit pouvoir vérifier ça avec le bitstream généré.
Au bout de quelques temps, la licence du logiciel expire. Il n’est plus possible de synthétiser avec. Un site chinois donne le truc pour que ça remarche. Pour éviter ce piratage, il semble être maintenant possible d’utiliser Yosys pour la partie synthèse !
This is just an install success story of Libero on Debian 9 (stretch). For the Risc-V contest, I recently acquired the Microsemi IGLOO2 development kit named FUTUREM2GL-EVB distributed by Futur-Electronic.
The development software for the IGLOO2 is named Libero and according to Microsemi, should works on Linux. But officially support only RedHat, CentOS and SuSE … not Debian. Microsemi provide a Linux installation guide to install it. It’s useful but should be adapted for Debian.
Download and install Libero
The first thinks to do is to download the installing file for Linux (and not the SP1 file which is only an update). Once downloaded we just have to launch it, if it’s not executable we can change rights with chmod command.
An install windows will raise and we can follow directives.
Licensing
Once installed, we need to install the license. For that, we need to know our mac address :
$ ip addr show dev eth0
[...]
link/ether 12:34:56:78:9a:bc [...]
The key that should be given to Microsemi is in upper case without ‘:’ :
$ ipython
In [1]: "12:34:56:78:9a:bc".replace(':','').upper()
Out[1]: '123456789ABC'
With this key we can then ask for a license file on microsemi website. The official Linux guide talk about license.dat file, but for me it was license.zip … Both are zip file in fact. We can then unflat it with unzip command:
The unflated file is a text file that should be edited with you text edito as explained in guide (page 6).
License server
The license server deamon must be downoaded on official microsemi website. Choose «Linux deamon» in table. It’s an archive of several binaries that should be unflated :
$ cd
$ tar -zxvf Linux_Licensing_Daemon.tar.gz
Linux_Licensing_Daemon/
Linux_Licensing_Daemon/actlmgrd
Linux_Licensing_Daemon/lmgrd
Linux_Licensing_Daemon/lmhostid
Linux_Licensing_Daemon/lmutil
Linux_Licensing_Daemon/mgcld
Linux_Licensing_Daemon/snpslmd
Linux_Licensing_Daemon/syncad
Linux_Licensing_Daemon/synplctyd
Export shell variables
Before launching software, we have to export some paths in our .bashrc :
#Libero
LIBERO_LICENSE_FOLDER=/home/giselle/flexlm
LD_LIBRARY_PATH=/usr/lib/i386-linux-gnu/:/usr/lib/x86_64-linux-gnu/
# For Floating License from a License Server
export LM_LICENSE_FILE=1702@gisellelaptop:$LM_LICENSE_FILE
export SNPSLMD_LICENSE_FILE=1702@gisellelaptop:$SNPSLMD_LICENSE_FILE
# <1702> is the port number
# martonilp is the license server host name
#For Node-Locked License
export LM_LICENSE_FILE=$LIBERO_LICENSE_FOLDER/license.dat:$LM_LICENSE_FILE
export SNPSLMD_LICENSE_FILE=$LIBERO_LICENSE_FOLDER/license.dat:$SNPSLMD_LICENSE_FILE
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib
export DISPLAY=:0
export PATH=/opt/microsemi/Libero_SoC_v11.9/Libero/bin:$PATH
On my computer, Microsemi softwares are installed in /opt/ directory.
Launching Libero
First launch license server :
$ cd
$./flexlm/lmgrd -c ~/flexlm/License.dat -log /tmp/lmgrd.log
Once license server launched we can run Libero :
$ libero
/opt/microsemi/Libero_SoC_v11.9/Libero/bin/libero_bin: /opt/microsemi/Libero_SoC_v11.9/Libero/lib/libz.so.1: no version information available (required by /usr/lib/i386-linux-gnu/libpng16.so.16)
I had a little problem with libz provided with libero package, then I removed it and linked libz of my distribution :
This shell doesn’t work like bash and generate some error in synplify scripts. To solve it I simply changed the /bin/sh link to /bin/bash :
$ cd /bin/
$ sudo mv sh shold
$ sudo ln -s bash sh
And I managed to synthesize my design.
…
But it’s not finished ! Once my bitstream generated I would like to download it on the IGLOO2 on kit. For that, we have to install correctly drivers for FlashPro5.
Directives are given in the official Microsemi Linux install guide, but udev syntax is false on Debian :
La référence en matière de livre sur l’architecture des processeurs. Tout y passe, l’arithmétique binaire, le langage assembleur, le datapath (le core d’un processeur), les pipelines et les différentes méthodes de prédiction de branches, les différentes architecture multicore, les GPU/VPU, la hiérarchie des mémoires, …
David A.Patterson est une superstar dans le milieu c’est lui qui est à l’origine de l’architecture de type «RISC». Et avec cette édition nous avons droit à une description fine du jeux d’instructions libre RISC-V très à la mode aujourd’hui. Tout en parlant principalement du RISC-V, le livre n’oublie pas les autres architectures célèbre comme x86, arm ou mips.
Le livre parait cher, mais vous en aurez pour votre argent tant le contenu est dense.
Dans un premier article je décrivais le «core» de TapTempo en Chisel. Mais si nous souhaitons tester en réel il faut choisir une plate-forme sur laquelle le synthétiser. Ce choix implique nécessairement d’ajouter du code pour «packager» notre composant.
La carte APF27 et son kit de développement conçus par Armadeus Systems sont parfaitement indiqués. En effet la carte possède un FPGA de taille plutôt raisonnable de chez Xilinx : le spartan3A. Ce FPGA est couplé à un microprocesseur i.MX27 permettant de communiquer directement via un OS «évolué» (ici U-Boot). Et … comble du perfectionnement, le kit de développement est muni d’un bouton poussoir, qui nous servira de «touche tempo» !
On trouvera le code du packaging sur le github du projet. L’interface du Top est donc relativement simple, et se résume à deux signaux :
Le signal d’entrée (bouton)
Le signal de sortie (data)
Coté processeur, il suffira de faire une lecture sur le bus pour pouvoir avoir la valeur en temps réel:
BIOS> md.w C8000000
Nous verrons plus tard que le design présenté ici est beaucoup trop simpliste et bloque le bus de l’apf27 ce qui entraîne une impossibilité de lancer Linux sur la carte.
Pour réaliser cela, dans un premier temps nous aurions tendance à déclarer deux signaux :
Un signal temporaire tmp
le signal synchronisé button_s
En chisel cela donnerait un truc dans le genre:
val tmp = RegNext(io.button)
val button_s = RegNext(tmp)
On déclare le registre en même temps que l’on connecte sa valeur d’entrée.
Pourtant à y regarder de plus près, ce montage de la double bascules n’est qu’un registre à décalage de 2 ! Et il existe une fonction pour ça dans la librairie «util» de chisel : ShiftRegister(sig, n)
Du coup nous pouvons réduire notre synchronisation en une simple ligne :
val button_s = ShiftRegister(io.button, 2)
Notre signal est maintenant synchronisé, mais nous n’avons pas filtré les rebonds. Or avec le genre de boutons que nous trouvons sur ces kits de développement c’est indispensable. Le FPGA étant cadencé à une fréquence élevé de 100Mhz nous allons «voir» tous les rebonds, et fausser par la même occasion notre mesure du tempo.
La plupart des «montages FPGA» permettant de faire de l’anti-rebond se basent sur des compteurs. Le tout étant de bien les dimensionner.
val clk_freq_khz = 100000
val debounce_per_ms = 20
val MAX_COUNT = (clk_freq_khz * debounce_per_ms) + 1
val debcounter = RegInit(MAX_COUNT.U)
La remise à zéro du compteur sera déclenchée par un front (montant ou descendant) du signal d’entrée. Nous déclarerons pour cela deux fonctions très commodes:
Permettant de détecter respectivement le front montant et le front descendant du signal d’entrée.
Tant que le compteur debcounter n’a pas atteint sa valeur maximal, on ne fait que compter. Si le compteur est à sa valeur max et que l’on a un front sur le signal d’entrée, alors on remet le compteur à zero et on recopie la valeur du signal d’entrée.
De cette manière on répercute rapidement un changement du signal d’entrée sans s’encombrer des multiples changement de valeurs rapide inhérentes aux rebonds.
Synthèse
Chisel est «vendu» à la base comme un langage HDL synthétisable, du coup nous allons le synthétiser, et avec un logiciel du marché s’il vous plaît : ISE.
Avant la synthèse nous avons besoin du code verilog généré. Pour le générer nous appellerons le ‘Driver’ déclaré dans le top:
Le code verilog ainsi généré se retrouve dans le répertoire courant avec le nom APF27TapTempo.v
Notre projet comportant deux modules verilog (APF27TapTempo et TapTempo) leurs déclaration dans le fichier source se fait en partant de la fin -> le «top» est à la fin du fichier et le «core» au début:
Il ne nous reste plus qu’à intégrer ce source à un projet ISE en y ajoutant la description des signaux d’entrées sorties et leurs placement sur les pins du FPGA. Ce qui peut-être fait en intégrant le fichier de description APF27TapTempoChisel.ucf
# clock
NET "clock" LOC="N9" | IOSTANDARD=LVCMOS18;# CLK0
NET "clock" TNM_NET = "clock";
TIMESPEC "TS_clock" = PERIOD "clock" 10.4167 ns HIGH 50 %;
# data bus
NET "io_data<0>" LOC="T5" | DRIVE=8 | IOSTANDARD=LVCMOS18; # DATA0
NET "io_data<1>" LOC="T6" | DRIVE=8 | IOSTANDARD=LVCMOS18; # DATA1
NET "io_data<2>" LOC="P7" | DRIVE=8 | IOSTANDARD=LVCMOS18; # DATA2
NET "io_data<3>" LOC="N8" | DRIVE=8 | IOSTANDARD=LVCMOS18; # DATA3
NET "io_data<4>" LOC="P12"| DRIVE=8 | IOSTANDARD=LVCMOS18; # DATA4
NET "io_data<5>" LOC="T13"| DRIVE=8 | IOSTANDARD=LVCMOS18; # DATA5
NET "io_data<6>" LOC="R13"| DRIVE=8 | IOSTANDARD=LVCMOS18; # DATA6
NET "io_data<7>" LOC="T14"| DRIVE=8 | IOSTANDARD=LVCMOS18; # DATA7
NET "io_data<8>" LOC="P5" | DRIVE=8 | IOSTANDARD=LVCMOS18; # DATA8
NET "io_data<9>" LOC="N6" | DRIVE=8 | IOSTANDARD=LVCMOS18; # DATA9
NET "io_data<10>" LOC="T3" | DRIVE=8 | IOSTANDARD=LVCMOS18; # DATA10
NET "io_data<11>" LOC="T11"| DRIVE=8 | IOSTANDARD=LVCMOS18; # DATA11
NET "io_data<12>" LOC="T4" | DRIVE=8 | IOSTANDARD=LVCMOS18; # DATA12
NET "io_data<13>" LOC="R5" | DRIVE=8 | IOSTANDARD=LVCMOS18; # DATA13
NET "io_data<14>" LOC="M10"| DRIVE=8 | IOSTANDARD=LVCMOS18; # DATA14
NET "io_data<15>" LOC="T10"| DRIVE=8 | IOSTANDARD=LVCMOS18; # DATA15
# Button
NET "io_button" LOC="C15" | DRIVE=12 | IOSTANDARD=LVCMOS33; # IO_L24N_1
Et nous pouvons lancer la synthèse/placement&routage/bitstream d’ISE. Une fois le bitstream généré il faut le transférer dans la mémoire de l’apf27 avec U-Boot :
BIOS> tftpboot ${loadaddr} APF27TapTempo.bit
Puis configurer le FPGA.
BIOS> fpga load 0 ${loadaddr}
Nous pouvons enfin lire la valeur du tempo avec la commande de lecture dans l’espace mémoire du bus fpga (WEIM) :
La valeur est lue en hexadécimal. Et comme l’adresse n’est pas gérée, tant que ça reste dans la zone du bus FPGA, la même valeur se répète.
Ici nous avons donc un tempo de 0x10e soit 270bpm. Pour le calibrer, j’ai pris le chronomètre et tenté d’appuyer sur le bouton toutes les secondes, ce qui doit logiquement donner 60bpm -> 0x3c.
Il est désormais possible de l’utiliser dans le cas concret de la mesure du tempo du très mauvais «nuit de folie» du groupe «début de soirée» .
Mesure du tempo du très mauvais «nuit de folie» :
On obtient une valeur de 0x7B soit 123 coups par minute (bpm).
Ps: si vous voulez laver votre cerveau de cette horrible chanson pourquoi pas une petite guérilla ? À moins que vous soyez adepte du crou. Ne me remerciez pas, moi aussi j’ai beaucoup souffert à mesurer le tempo de cette horreur 😉