Archives de catégorie : Non classé

Déballage du kit de développement Lichee Tang muni d’un FPGA Chinois Anlogic

La société chinoise SiPeed propose un kit de développement permettant d’évaluer le FPGA chinois EG4S20BG256 produit par Anlogic. Le kit peut être commandé pour une vingtaine de dollars sur le site de vente en ligne Seeed spécialisé dans les kits de développement en électronique «grand public».

Contenu du kit SiPeed coté FPGA
Contenu du kit Lichee Tang botto

Au branchement du kit Debian/Linux détecte un convertisseur USB-JTAG de chez Anlogic:

$ sudo dmesg -c
[30017.300586] usb 3-2: new full-speed USB device number 5 using xhci_hcd
[30017.441796] usb 3-2: New USB device found, idVendor=0547, idProduct=1002
[30017.441801] usb 3-2: New USB device strings: Mfr=1, Product=2, SerialNumber=0
[30017.441804] usb 3-2: Product: USB-JTAG-Cable
[30017.441807] usb 3-2: Manufacturer: Anlogic

L’environnement de développement est disponible en téléchargement (~100Mo) sous forme d’une archive rar ici. Le fichier se décompresse avec la commande unrar:

$ unrar x ../TD_RELEASE_SEPTEMBER2018_RHEL.rar

Il faut ensuite mettre en exécutable le répertoire bin:

$ chmod +x bin/*

Et on peut ensuite lancer l’IDE:

$ cd bin ; ./td -gui

La fenêtre suivante s’ouvre alors :

L’environnement de développement Tang Dynasty lancé sur Debian

C’est l’environement de développement le plus simple à installer que j’ai pu voir depuis que je bricole des FPGA. Même si la procédure d’installation est quand même étrange (un obscure .rar à télécharger puis à décompresser).

Pour synthétiser un premier design on va avoir besoin d’un minimum de documentation sur la schématique de la carte ainsi que sur le pinout du FPGA. On trouvera les schémas du kit en format pdf ici.

On trouve des exemples de code pour le kit sur github, notamment pour faire clignoter une led. La base du Hello World en électronique.

Pour tester la led qui clignote on crée un nouveau projet avec le fpga EG4S20BG256. On ajoute ensuite le source pour la led se trouvant dans le répertoire Tang_FPGA_Examples/0.LED/src/led.v

L’extension du fichiers de contrainte est en *.adc pour l’exemple de led le fichier se trouve dans le répertoire Tang_FPGA_Examples/0.LED/constraint/io.adc

Une fois les deux fichiers ci-dessus ajouté à notre projet on peut lancer la procédure complète pour générer le bitstream en double-cliquant sur l’icône «Generate Bitstream» dans l’encart «FPGA Flow» de l’ide.

La génération du bitstream est très rapide. Pour le télécharger ensuite dans le FPGA il faut bien sûr que le kit soit connecté à l’usb.

Le configurateur se lance en allant dans le menu Tools -> Download.

Chez moi j’ai du lancer l’ide en sudo pour éviter un plantage fatal, à ce moment. Le configurateur se présente comme ci-dessous :

Il faut ajouter le fichier bitstream au moyen du bouton de gauche «Add» puis cliquer sur la ligne du tableur pour «dégriser» le bouton «run», qui permet de télécharger le bitstream pour configurer le FPGA.

Pour conclure, je pensais beaucoup plus souffrir à mettre en route ce kit à la documentation majoritairement en chinois. Mais la note de blog de JAEB et le projet d’exemples sur github m’ont beaucoup aidé à faire clignoter cette led tricolore rapidement. À l’avenir il faudra regarder si ce FPGA est vraiment nouveau ou si ça n’est pas une copie d’un constructeur bien connu. On doit pouvoir vérifier ça avec le bitstream généré.

Au bout de quelques temps, la licence du logiciel expire. Il n’est plus possible de synthétiser avec. Un site chinois donne le truc pour que ça remarche. Pour éviter ce piratage, il semble être maintenant possible d’utiliser Yosys pour la partie synthèse !

Pour aller plus loin:

Sortie de la version 1.1 de Cocotb

La nouvelle vient de tomber sur la liste de diffusion: la version 1.1 de cocotb est sortie. C’est une grande nouvelle pour cette librairie python de cosimulation HDL. En effet, elle était bloquée dans sa version 1.0 depuis plus de 4 ans maintenant.

Mais les deux principaux mainteneurs travaillaient sur d’autres sujets et ne trouvaient plus le temps de s’occuper de ce projet. Malgré la communauté d’utilisateurs grossissante, les correctifs et les propositions d’améliorations restaient jusqu’ici lettre morte faute de temps pour eux de les relire.

Cette annonce de sortie d’une nouvelle version permet surtout au logiciel de sortir de sa torpeur. Les principaux développeur du projet ont réussi à s’organiser pour déléguer le développement et entrer dans un cycle vertueux de vérification/release.

Nous allons enfin pouvoir sérieusement écrire nos banc de tests en python et oublier les usines à gaz que sont UVM, UVVM et consorts. Tout en gardant notre logiciel de simulation HDL préféré, c’est toute la magie de la cosimulation.

2019, l’année de la libération des FPGA ?

En matière de liberté le monde du FPGA est resté dans les années 90. Une époque obscure où l’on cachait le mode de fonctionnement des logiciels, où il fallait signer des accords de non divulgation (NDA) avant de pouvoir simplement utiliser un logiciel. Une époque où l’on croyait encore que la sécurité par l’obfuscation était le summum de l’état de l’art pour sécuriser et protéger son logiciel et ses données. Mais il est possible que les nouvelles de sorties de nouveaux logiciels libre de fin d’année 2018 changent la donne.

Un FPGA est littéralement un champs de portes programmable. Le paysan-développeur ensemence son champs avec un fichier nommé «bitstream». Ce bitstream permet de configurer les liens entre les différentes portes logiques du FPGA et constituer ainsi un circuit électronique (numérique).

C’est ce fichier qui n’est documenté par aucun fabricant de FPGA.

Jusqu’à très récemment pour ses semailles, le développeur devait passer par le logiciel fourni par le fabricant pour générer son bitstream. À chaque modèle un logiciel spécifique, avec tous les défauts inhérent aux logiciels fermés :

  • Obligé d’utiliser un ordinateur et un système d’exploitation supporté officiellement par le fabricant (impossible de générer le bitstream sur un système embarqué ARM par exemple).
  • Grande difficulté à gérer les bugs du logiciels (et les bugs c’est vraiment pas ça qui manque)
  • Support aléatoire
  • Obligé de payer une licence pour les «gros» FPGA
  • Licence Gratuite pour les petits FPGA mais un système de gestion de ladite licence obligeant à être fliqué par le fabricant (serveur de gestion de licence, obligation d’identification, collectes de données personnelles, …) .

L’argument principale des fabricants est qu’ils risquent de perdre toutes crédibilités en matière de sécurité auprès des clients militaires. Et qu’ils risquent d’être plus facilement copié par les chinois (Même s’ils y a déjà des copies fabriquées en chine). Il a pourtant été démontré depuis longtemps qu’il est tout à fait possible de faire le reverse-engineering des bitstream. C’est notamment ce qu’avait fait en 2008 Jean-Baptiste Note et Éric Rannaud avec debit pour les FPGA de Xilinx. Mais c’est surtout ce qu’a fait Wolf Clifford en 2015 avec Icestorm pour servir notamment à son logiciel de synthèse Yosys en utilisant une plate-forme réel : les ice40 de Lattice.

Ce «déverrouillage» des ice40 a permis une véritable révolution dans le domaine du FPGA chez les bidouilleurs. Beaucoup de cartes électroniques utilisant un ice40 on vu le jours, et le projet à fédéré tout un tas de nouveau projet de logiciels libre.

À l’origine, icestorm permettait de faire la synthèse avec yosys (transformer du verilog en netlist), le placement routage avec arachne-pnr (placer les différentes portes dans le FPGA et les relier entre elles) ainsi que la génération du bitstream avec icestorm (icepack).

Un fois le bitstream généré il est nécessaire de vérifier que les temps de propagation entre les différentes portes soient inférieur au cycle d’horloge. Il est donc nécessaire de posséder la spécification des temps de propagation entre les portes dans le FGPA. Chose qui a également été faite dans le projet Icestorm (icetime).

Le problème qui persistait avec cette chaîne de développement était arachne-pnr qui ne prenait pas en compte les timings du FPGA pour faire son placement routage. C’est ce verrou qui vient de sauter fin 2018 avec la sortie du nouveau logiciel de placement routage nextpnr initié par Clifford mais fédérant une communauté de développeurs de plus en plus grosse.

En plus de faire du placement routage en fonction des temps de propagations, nextpnr possède une interface graphique permettant une visualisation du FPGA une fois le projet routé.

Vue de l'interface graphique de nextpnr
Vu de l’interface graphique de nextpnr (source github officiel)

Tous ces outils sont désormais regroupés dans un projet opensource ayant pour objectif de réaliser un IDE complet pour les FPGA et nommé SymbiFlow.

Le projet SymbiFlow a pour objectif de devenir le «GCC du FPGA et des ASIC». En plus de icestorm, SymbiFlow intègre d’autres projets de «reverse-bitstream», notamment:

  • icestorm: déjà longuement décrit dans cet article, permet de faire un développement complet avec des outils opensource.
  • X-Ray: Projet de rétro-ingénierie des FPGA de la série 7 de xilinx. Les «tuiles standard» de ces FPGA sont déjà bien documenté et il est possible de générer un bitstream pour des Artix 7.
  • Trellis: Projet de rétro-ingénierie des FPGA ECP5 de Lattice. Toute la matrice a été documenté, et il est désormais possible de faire un projet pour ECP5 de bout en bout avec des outils open-source.
  • 2064: Projet de rétro-ingénierie des FPGA XC2064 de xilinx. Bon ce projet peut être considéré comme annecdotique puisque il vise à reverser le premier fpga de Xilinx du début des années 80 : le xc2064.

Le projet SymbiFlow est un projet encore «en travaux» mais il permet de tracer une voie et fournir des outils permettant de faire la retro-ingénierie d’autres FPGA. Comme on le voit dans les différents projets intégrés il est possible de voir fleurir d’autre projets de retro-ingénierie de FPGA et voir émerger une solution opensource solide pour développer sur FPGA.

L’année 2018 s’est terminée en fanfare avec la présentation de nextpnr au 35c3. L’année 2019 sera-t-elle celle de la libération des FPGA avec une fédération des projets de rétro-ingénierie de tous les FPGA du Marché ? Un fabricant de FPGA osera-t-il publier la documentation des ses bitstream pour ses FPGA ? Vera-t-on l’émergence de nouveaux acteur du FPGA faisant du libre ?

Vous saurez tous cela en suivant le prochain épisode de l’année 2019 !

2018, l’année de la libération des processeurs ?

2018 aura été l’année du Risc-V. Ce jeux d’instructions libre existait bien sûr avant 2018 puisqu’il a été fondé en 2010, mais c’est véritablement en 2018 qu’il aura pris son envol.

Entendons nous bien, le Risc-V pour Reduced Instructions Set Computing version V n’est pas un microprocesseur. C’est une définition du jeux d’instructions ainsi que des registres internes du processeur. Bref cela doit être vu comme une standardisation open-source du langage d’un processeur. Libre aux fondeurs de développer leurs architectures de processeur compatible Risc-V. Il définit les instructions assembleur et leurs formats (encodage) mais il ne définit pas le nombre d’étages de pipelines, comment est géré la prédiction de branche ni le format de bus de données et d’instructions. Tout cela relève de l’implémentation.

Cette standardisation du jeux d’instructions intéresse beaucoup de créateurs de microprocesseurs. En effet, plus besoin d’adapter ou d’écrire les outils logiciels pour son processeur; comme c’est un standard il suffit d’utiliser les «toolchains» classique comme GCC OpenOCD ou LLVM qui bien sûr l’intègre désormais, mais également toutes une série d’outils non libres. Linux n’est pas en reste puisqu’il intègre complètement l’architecture dans ses versions récente. C’est également le cas des petits OS temps réel comme Zephyr .

C’est, entre autre, cette disponibilité des outils qui a poussé de nombreux labo à basculer leurs processeurs sur ce jeux d’instructions. On pense notamment à :

  • PULP (Parallel Ultra Low Power ): Une architecture multi-core pour l’embarqué développé par l’université de Zurich. Utilisé par les processeur GAP8.
  • Patmos: le processeur temps réel
  • Shakti: De l’université indienne de madras
  • …: certainement plein d’autre

Il existe une tripotée de processeur Risc-V «soft» que l’on peut synthétiser dans des FPGA. Mais, à ma connaissance, le premier composant silicium sortie des chaînes de fabrication de fondeurs est le E310 de la société SiFive. Ce composant est sorti en 2017 et il est possible d’acheter un kit de développement «compatible arduino» pour se faire la main dessus.
Le E310 est un microcontrôleur 32bits, qui a fait un peu parler de lui quand il est sorti mais qui reste un démonstrateur. La société SiFive souhaitant rester une entreprise «fabless».

Mais c’est véritablement en 2018 que les choses se sont accélérées avec le ralliement de grands noms de l’industrie électronique à la fondation Risc-V et la sortie de nombreux processeurs «en silicium» bien concret.

On pensera notamment à:

  • U540: Hifive Unleashed de la société SiFive (encore ;). Un quad core RV64G plus un core RV64I pour la supervision temps réel. SiFive à sortie un kit de développement permettant d’y faire tourner un Linux compatible desktop.
  • GAP8: de greenwave technologie, un processeur PULP de 8 cores pour l’IoT.
  • K210: de Kendryte, un microcontrôleur chinois dual core RV64I
  • RV32M1: de NXP (hé oui ! j’en suis le premier étonné) un microcontrôleur très spécial puisqu’il contient un core RV32I mais également deux cores ARM cortex-M0 et M4. Il ne manque plus que le MIPS pour avoir un beau pot-pourri des proc RISC du marché 😉

Toutes ces sorties ont commencées à faire très peur aux concurrents, et notamment à son concurrent principale : ARM. Qui a tenté une campagne de dénigrement de Risc-V avant de très vite se raviser et de lancer une timide «riposte» avec un partenariat Xilinx pour fournir gratuitement des cortex-Mx dans les FPGA de Xilinx.

Mais Risc-V a également fait bouger l’autre concurrent beaucoup moins connu : MIPS qui lui a … libéré son set d’instructions !

Risc-V reste pour l’instant dans le domaine de l’embarqué et du microcontrôleur, mais la fondation a clairement l’intention de couvrir les domaines des calculateurs et autres mainframes. Domaine où MIPS est déjà un peu plus installé.

Risc-V arrivera-t-il à gagner la bataille des supercalculateurs ? ARM adoptera-t-elle le set d’instructions Risc-V ? Intel sentira-t-il le roussi quand Risc-V viendra le titiller sur ses plate-bandes ? MIPS reviendra-t-il dans la course avec son ouverture en open-source ? Des questions auxquels nous pourrons peut-être répondre en 2019. Un combat qui promet d’être passionnant.

Mais une chose est sûr, en 2018 l’opensource a fait une grande avancée dans le domaine des processeurs grâce à ce set d’instruction de l’université de Berkeley !

Comme j’aimerai voir ça dans le domaine des FPGA 😉



Sortie de Yosys Open Synthesis Suite 0.8

L’annonce a été faite mardi 16 octobre par W. Clifford : La version 0.8 de Yosis, un logiciel libre de synthèse Verilog est sortie.

Dans le process de développement FPGA/ASIC la synthèse est l’étape de conversion du modèle matériel simulé en « netlist RTL » d’où l’on peut dériver le circuit réel.

[La suite sur Linuxfr …  ]

Computer Organization and Design RISC-V Edition

La référence en matière de livre sur l’architecture des processeurs. Tout y passe, l’arithmétique binaire, le langage assembleur, le datapath (le core d’un processeur), les pipelines et les différentes méthodes de prédiction de branches, les différentes architecture multicore, les GPU/VPU, la hiérarchie des mémoires, …

David A.Patterson est une superstar dans le milieu c’est lui qui est à l’origine de l’architecture de type «RISC». Et avec cette édition nous avons droit à une description fine du jeux d’instructions libre RISC-V très à la mode aujourd’hui. Tout en parlant principalement du RISC-V, le livre n’oublie pas les autres architectures célèbre comme x86, arm ou mips.

Le livre parait cher, mais vous en aurez pour votre argent tant le contenu est dense.

Synchronous Synthesizable Hardware Description Language (SSHDL)

Depuis quelques années, plusieurs nouveaux langages HDL basés sur des langages de programmations génériques émergent. Ces programmes peuvent être qualifiés de SSHDL pour Synchronous Synthesizable Hardware Description Language

HDL ?

Pour Hardware Description Langage, c’est un langage de description matériel. Un HDL permet de décrire le comportement d’un composant numérique, comme des bascule D, des ALU, ou des microprocesseurs complet.

Les deux HDL les plus connu sont bien sûr le VHDL et le Verilog. Se sont les seuls à être reconnu comme standard par tous les logiciels de synthèses du marché. C’est donc un passage obligé pour travailler sur les FPGA.

Synthesizable ?

Cela peut paraître étrange, mais VHDL/Verilog ont beau être supporté par tous les logiciels de synthèse du marché, se ne sont pas des langage que l’on peut considérer comme synthétisable. Seul un sous ensemble de ces deux langages l’est, le reste étant utilisé pour la simulation.

Une architecture décrite dans un langage synthétisable … sera synthétisable. Si une portion du code n’est pas synthétisable alors il y a une erreur de code.

Synchronous ?

C’est quelque chose qui est indispensable en conception HDL. Tout le design doit être cadencé avec la même horloge, même si nous cherchons à capturer un événements extérieur (comme une interruptions) il est nécessaire de le resynchroniser avec l’horloge principale. Dans un SSHDL, le fonctionnement synchrone est implicite. L’horloge qui cadence tout le design n’a pas a être indiqué à chaque registre.

Toutes personnes qui a travaillé sur un FPGA de taille raisonnable le sait, il est impossible de cadencer tout son design avec la même horloge, puisque certain sous ensembles comme les contrôleurs de RAM ou les sérialiseur/déserialiseur nécessitent leurs propres horloges qui n’est généralement pas synchrone avec l’horloge globale. Il est alors nécessaire d’introduire la notion de domaines d’horloges et de soigner la conception des franchissement de domaines d’horloges de nos signaux (Clock domain crossing) afin d’éviter la métastabilité.

C’est un des points sensible qui fait la qualité d’un SSHDL : comment est géré le franchissement de domaines d’horloges ?

Standards industriels ou joujoux universitaires ?

Pour que ces langages puissent avoir un minimum d’espoir d’être déployés dans l’industrie, il faut que l’on puisse les utiliser sur les FPGA du marché. Il faut donc  des logiciels capables de les synthétiser. Il est illusoire de croire que les gros fabricant de FPGA adoptent ces petits langages open-source pour leurs FPGA. Le SystemC est un bon exemple de langage qui n’a pas percé par manque de logiciel de synthèse (par contre il est très utilisé dans la simulation, car très rapide).

C’est pour cette raison que ces nouveaux langages ont choisi de générer leur designs en VHDL et/ou Verilog. Toutes la conception/simulation se fait donc avec ces nouveaux langages, et quand on veut faire la synthèse on lance la génération du VHDL/Verilog pour tester sur FPGA.

On peut ainsi considérer le VHDL/Verilog comme un langage «assembleur» du FPGA/ASIC.

Petites listes de SSHDL

La liste des SSHDL connus peut être trouvé dans la rubrique HDL de ce blog.