Icarus vs Verilator

Plusieurs solutions de simulations s’offrent à nous quand on développe un composant en Verilog. On peut écrire le testbench en Verilog, de manière à être compatible avec la plupart des simulateurs du marché. Dans ce cas, le simulateur libre le plus célèbre est Icarus.

Mais la solution du «tout Verilog» est relativement lente en temps de simulation, et l’utilisation du langage Verilog est restrictive,  en effet il n’est pas facile de s’approprier toutes les subtilités du langage.

C’est là que la solution de Verilator devient très intéressante. Verilator permet de convertir un modèle de composant écrit en Verilog synthétisable en un modèle C++. De cette manière, écrire le code du testbench revient à instancier notre composant dans un main() en C++ et à décrire nos tests avec toute la liberté qu’offre ce langage.

Mieux encore, il est possible d’écrire notre testbench en SystemC, et de profiter ainsi de cette librairie conçue pour la simulation de circuit numérique.

L’idée va être ici de mesurer le temps effectif de simulation de chacune de ses deux solutions. On se servira pour cela du composant d’antirebond du projet «blinking led project» (blp) disponible sur github.

Le composant synthétisable

Le composant button_deb commute sa sortie button_valid à chaque front montant du signal d’entrée button_in. Pour que le fonctionnement soit un peu plus complexe qu’une simple commutation, et surtout pour bien coller au fonctionnement réel, le composant est muni d’un antirebond de 20 ms (par défaut). Quand le premier front survient, un compteur est déclenché et aucun autre front n’est pris en compte pendant 20 ms.

Voici ce que cela donne avec gtkwave:

blp_button_deb
Chronogramme du testbench avec GTKwave

Le testbench verilog (Icarus)

Tout comme en VHDL, un testbench en Verilog se présente sous la forme d’un module sans entrée/sortie.

La première chose à définir est le temps, avec la directive `timescale:

`timescale 1ns/100ps;

Le premier chiffre indique le pas de simulation, cela correspondra au temps d’attente que l’on retrouvera tout au long du code avec l’«instruction» ‘#’.  Le deuxième nombre indique la précision maximum.

Par exemple, pour simuler l’horloge à 95Mhz on écrira :

/* Make a regular pulsing clock. */
always
    #5.263158 clk = !clk;

Mais comme la précision indiquée en début de code est de 100ps, seule le 5.2 sera pris en compte pour la simulation, ce qui dans notre cas est tout à fait suffisant.

La simulation de l’appui sur le bouton avec rebond se fait ensuite dans un process que l’on appel souvent «stimulis» par convention :

/* Stimulis */
initial begin
    $display("begin stimulis");
    $dumpfile("simu/button_deb_tb.vcd");
    $dumpvars(1, clk, rst, button_in, button_valid, button);
    $monitor("At time %t, value = %h (%0d)",
        $time, button_in, button_in);
[...]
end

Le Verilog fourni tout un tas de primitive permettant de simplifier le debuggage. Notamment $display() et $monitor(), pour afficher du texte pendant la simulation. $display() ne fait qu’afficher du texte au moment où la fonction est appelée, alors que monitor va afficher le texte à chaque changement d’état de ses paramètres.

Les functions $dump* permettent de définir le format de fichiers des traces ainsi que les signaux a dumper. Dans ce cas précis on choisira le format vcd qui est un format non compressé, de manière à améliorer la comparaison avec verilator qui lui ne sait faire que du vcd. Mais cela génère vite de très gros fichiers, il sera préférable d’utiliser le format compressé lxt2, fst ou fsdb pour des simulations plus longues.

Pour factoriser un peu de code d’attente on décrit des tâches d’attentes wait_ms et wait_us :


/* some usefull functions */
task wait_us;
    input integer another_time;
    begin
        repeat(another_time) begin
            # 1_000;
        end
    end
endtask

task wait_ms;
[...]

Tâches qui seront appelées lors de la simulation des rebonds :

[...]
        button_in = 1;
        wait_us(`DEBOUNCE_PER_MS * 8);
        button_in = 0;
        wait_us(`DEBOUNCE_PER_MS * 8);
        button_in = 1;
        wait_us(`DEBOUNCE_PER_MS * 10);
        button_in = 0;
        wait_us(`DEBOUNCE_PER_MS * 10);
        button_in = 1;

        wait_ms(`DEBOUNCE_PER_MS * 2);
[...]

Pour lancer notre testbench avec Icarus, la première chose à faire est de compiler le code au moyen de la commande suivante :

iverilog -o simu/button_deb test/test_button_deb.v src/button_deb.v

Icarus va ainsi créer un binaire exécutable nommé simu/button_deb que l’on lancera avec les arguments de dumps:

vvp simu/button_deb -lvcd

Le fichier de traces (VCD) généré fait une taille vénérable de 752Mo et peut être visualisé avec gtkwave en l’indiquant simplement en paramètre de la commande :

gtkwave simu/button_deb_tb.vcd

Sur un Lenovo T430, la simulation prend 1 minute et 17 secondes, ce qui est tout de même relativement lent pour une simulation d’appui sur un boutton 😉

Voyons maintenant ce que nous donne Verilator.

Le testbench C++

Un testbench Verilator se présente sous la forme d’un main() C++. Dans le main() du testbench nous instancierons l’objet correspondant au model verilog transformé par verilator.
Pour cela nous devons donc convertir notre bouton_deb.v en C++ au moyen de la commande Verilator suivante :

verilator -Wall -cc src/button_deb.v --trace --exe test/test_button_deb.cpp

Cette commande va nous créer un projet avec le code source du modèle ainsi que le makefile pour compiler. Il suffira donc de se rendre dans le répertoire obj_dir et de faire «make» pour compiler le modèle.

Il ne nous restera plus qu’à instancier notre bouton dans notre testbench test_button_deb.cpp :

    Vbutton_deb* top = new Vbutton_deb;

Ainsi que l’objet tfp pour les dump VCD:

    VerilatedVcdC* tfp = new VerilatedVcdC;

Pour simuler notre objet «top» il faut assigner des valeurs aux signaux d’entrées :

    top->rst = 1;
    top->button_in = 0;
    top->clk = 0;

Puis évaluer les sorties avec la méthode eval() :

        top->eval();

À chaque front d’horloge il faut donc changer la valeur de clk et évaluer :

        top->clk = !top->clk;
        top->eval();

Dans tout ce que nous venons de voir le temps n’intervient pas. En réalité, le temps n’est tout simplement pas géré dans les modèles Verilator, le modèle ne fait qu’évaluer les sorties en fonction des entrées, c’est à nous de gérer le temps comme nous le souhaitons.

Nous allons donc gérer le temps au moment du dump des signaux en lui indiquant le temps en argument:

        tfp->dump(10);

Pour éviter d’avoir à taper tout ça à chaque fois on pourra créer une fonction «time_pass» qui fait passer le temps, avec un compteur global pour incrémenter le temps:

#define BASE_TIME_NS ((1000*1000)/(CLK_FREQ*2))
int base_time = 0;

/* the time is passing */
void time_pass(VerilatedVcdC *tfp, Vbutton_deb *top) {
        top->clk = !top->clk;
        tfp->dump(base_time*BASE_TIME_NS);
        top->eval();
        base_time++;
}

À l’image du testbench verilog, on pourra aussi créer des fonctions d’attente wait_ms et wait_us:

/* wait for us */
void wait_us(VerilatedVcdC *tfp, Vbutton_deb *top, int timeus) {
    int wait_time = 0;
    while((wait_time * BASE_TIME_NS) < (timeus * 1000)) {
        wait_time++;
        time_pass(tfp, top);
    }
}

/* wait for ms */
void wait_ms(VerilatedVcdC *tfp, Vbutton_deb *top, int timems) {
    int wait_time = 0;
    while((wait_time * BASE_TIME_NS) < (timems * 1000 * 1000)) {
        wait_time++;
        time_pass(tfp, top);
    }
}

Le code simulant les rebonds du bouton ressemble ainsi à s’y méprendre au code Verilog:

[...]
        top->button_in = 1;
        wait_us(tfp, top, DEBOUNCE_PER_MS);
        top->button_in = 0;
        wait_us(tfp, top, DEBOUNCE_PER_MS);
        top->button_in = 1;
        wait_us(tfp, top, DEBOUNCE_PER_MS * 5);
        top->button_in = 0;
        wait_us(tfp, top, DEBOUNCE_PER_MS * 5);
        top->button_in = 1;
        wait_us(tfp, top, DEBOUNCE_PER_MS * 8);
        top->button_in = 0;
        wait_us(tfp, top, DEBOUNCE_PER_MS * 8);
        top->button_in = 1;
        wait_us(tfp, top, DEBOUNCE_PER_MS * 10);
        top->button_in = 0;
        wait_us(tfp, top, DEBOUNCE_PER_MS * 10);
        top->button_in = 1;

        wait_ms(tfp, top, DEBOUNCE_PER_MS * 2);
[...]

Pour lancer la simulation on va d’abord compiler le tout :

make -C obj_dir/ -j -f Vbutton_deb.mk Vbutton_deb

Puis le lancer simplement comme un vulgaire binaire exécutable :

./Vbutton_deb

La simulation crée un fichier VCD de 654Mo que nous pouvons visualiser avec gtkwave.
Sur le même Lenovo T430 la simulation ne dure cette fois que 17 secondes, ce qui est très nettement plus rapide qu’Icarus !

Mieux, si on optimise le code à la compilation avec l’option -O3 :

verilator -Wall -cc src/button_deb.v --trace -O3 -noassert --exe test/test_button_deb.cpp

Le temps de simulation tombe à 3 secondes !

La rapidité d’exécution est telle que certain réussissent à faire «tourner» un soft-core avec son programme, à des fréquences allant jusqu’à la centaine de kilohertz.

Formidable !

C’est un peu l’expression que l’on a lors des premiers tests de verilator, pouvoir faire de la simulation 20 fois plus rapidement qu’Icarus semble formidable. Surtout quand cela passe par de la simplicité d’écriture du testbench en C++ ou SystemC.

Néanmoins il faut relativiser un peu notre ferveur, Verilator a encore un gros point noir: il ne gère pas le temps. Verilator n’est capable que de gérer des modèle Verilog synthétisable. Mais si ce code synthétisable inclu des primitives du constructeurs : RAM, Multiplieur, … et surtout PLL. Verilator ne sera pas capable de les simuler.

En ce qui concerne les Ram ou les multiplieurs cela ne pose pas trop de problème dans la mesure ou il est assez simple de les inférer. Mais pour les PLL cela devient bien plus compliqué, et je ne parle même pas des composants spécifique au constructeur (Bus serie, transceiver, core, …).

Ce «bug» a été répertorié il y 5 ans déjà mais pour l’instant personne ne semble s’être attelé à la tâche. D’après un des auteur de Verilator ajouter cette fonctionnalité devrait prendre quelques mois de programmation et de test. Mais cela vaudrait quand même le coup !

Alors qui s’y colle ?

Du futur de Chisel

Comme on le sait, les membres du Berkeley Architecture Research group continuent à travailler d’arrache-pied sur Chisel.

On peut trouver un tutorial et les applications futures de Chisel ici (pdf).

Un coprocesseur CycloneV via le PCIe avec l’APF6_SP

Armadeus systems sort une nouvelle carte à base de processeur + FPGA au mois de février 2015: l’APF6_SP.

apf6_sp_show
Une photo de l’APF6_SP avec son processeur i.MX6D et son fpga CycloneV C3.

Armadeus systems s’est spécialisée dans les modules proc + fpga. Ils avaient déjà l’APF27 à base d’i.MX27 et de spartan3a ainsi que l’AFP51 à base d’i.MX51 et de spartan6. Ces deux cartes possèdent un lien de type bus mémoire avec le processeur de manière à ce que le FPGA soit vu dans sont espace mémoire de la même manière que les autres périphériques.

Schéma général de l'APF6_SP
Schéma général de l’APF6_SP

L’APF6_SP est toujours à base de processeur i.MX de chez Freescale : l’i.MX6. Ce processeur se décline en version solo, dual ou quad core. Une des particularité de cette nouvelle carte est qu’elle utilise un FPGA de chez Altera plutôt que Xilinx.

Deux gros changement interviennent avec cette nouvelle carte :

  • Le liens processeur-FPGA n’est plus de type «bus mémoire» mais utilise le PCI express. Ce qui le rend beaucoup plus standard.
  • Deux puces de RAM DDR3 sont dédiées au FPGA, en plus de la RAM dédiée au processeur. Cette caractéristique ouvre des perspectives en matière de traitement d’images/vidéo; en effet il est possible de stocker des images entières dans la DDR; possibilitée qui est très limités en utilisant les blocks de ram interne au FPGA.

Mais pourquoi cette carte est-elle intéressante aux yeux du front de libération des FPGA ?

Car Armadeus Systems se base essentiellement sur des logiciels libres pour faire tourner ses modules. Le BSP est à base de buildroot, tous les outils de développement peuvent fonctionner sous Linux. Et pour le CycloneV, Quartus en version gratuite (web edition) sous Linux suffit.

Armadeus System joue la transparence avec une documentation abondante via un wiki et fournie tout son code sur sourceforge.

Enfin, un portage pour POD est en cours. Ce qui permettra d’utiliser un outils libre pour architecturer ses projets FPGA.

Un modulateur PWM en Chisel

Pour changer des LED qui clignotent, voici un modulateur PWM écrit en Chisel avec son testbench.

Le code ci-dessous (PWM.scala) est du Scala standard utilisant la librairie Chisel.

import Chisel._
/* Classe contenant le comportement du module */
class PWM extends Module {
  /* Bundle io obligatoire */
  val io = new Bundle {
    val duty  = UInt(INPUT,  8)
    val out  = Bool(OUTPUT)
  }

  /* Registre 8 bits pour le compteur */
  val counter = Reg(UInt(width=8))
  counter := counter + UInt(1)

  /* Registre de sortie avec le comparateur */
  io.out := Reg(next=(counter<io.duty))  
}

/* Point d'entrée du programme */
object Example {
  def main(args: Array[String]): Unit = {
    chiselMain(args, () => Module(new PWM()))
  }
}

Le code du modulateur ci-dessus est découpé en deux parties.

La première décrit le comportement du module. Elle comprend le bundle (similaire au record en VHDL) appelé io, qui doit être présent dans chacun des modules pour décrire les entrées et les sorties, un compteur 8 bits, et le registre de sortie qui est alimenté par le comparateur de rapport cyclique.

La deuxième partie est nécessaire pour le module qui se trouve au sommet de la hiérarchie afin de décrire le point d’entrée qui servira à la génération du code.

Il est aussi nécessaire de fournir le fichier build.sbt qui sert à indiquer a SBT (l’outil de build Scala) qu’il doit également aller chercher Chisel dans ses paquets avant de lancer la compilation. SBT va d’office compiler tout les fichiers Scala (avec l’extension .scala) qu’il trouve dans le répertoire courant.

libraryDependencies += "edu.berkeley.cs" %% "chisel" % "latest.release"

scalacOptions ++= Seq("-deprecation", "-feature", "-unchecked", "-language:reflectiveCalls")

Il faut ensuite s’assurer que Chisel génère du Verilog en lançant la commande

sbt 'run --v'

Il manque un banc de test pour exercer le design. Chisel propose de compiler également pour nous un modèle C++ du design qu’on peut obtenir
en utilisant la commande suivante :

sbt 'run --test --genHarness --vcd'

On va maintenant créer un testbench C++ qui permettra de générer les VCD. Appelons ce fichier main_pwm.cpp.

#include "PWM.h"
#include <iostream>

int main (int argc, char* argv[]) { 
  // Créer l'objet PWM
  PWM_t* c = new PWM_t();

  // Recupérer le nombre de cycles à exécuter
  int lim = (argc > 1) ? atoi(argv[1]) : -1;
  if(lim == -1) {
     cout << "wrong argument, should be :" << endl;
     cout << "a.out <n>" << endl;
     return 1;
  }
  // Initialiser le modèle
  c->init();

  // Ecrire l'entête du VCD
  c->dump_init(stdout);

  // Ecrire le rapport cyclique
  c->PWM__io_duty = LIT<8>(100);
  for (int t = 0; lim < 0 || t < lim; t++) {
    // Active le reset sur le premier cycle
    dat_t<1> reset = LIT<1>(t == 0);

    // Dump du VCD
    c->dump(stdout,t);

    // Avancer d'une période d'horloge
    c->clock(reset);
    } 
}

Il reste juste à compiler le tout avec g++.

g++ PWM.cpp main_pwm.cpp

À exécuter

./a.out 10000 > out.vcd

Et admirer le résultat dans gtkwave

gtkwave out.vcd

Le FLF vous souhaite ses meilleurs vœux pour pour l’année 2015.

Que les outils pour les FPGA se libèrent et qu’ils se répandent dans tous les greniers et caves de tous les bidouilleurs.

Va-t-on voir émerger une chaîne de développement complète cette année ? Quelques signes donnent de l’espoir notamment  du coté de VTR .

Bonne année 2015

vhd2vl: Convertir du vhdl en verilog

vhd2vl est un petit utilitaire écris en C (flex/bison) permettant de convertir du VHDL synthétisable en verilog. La page officiel présente la version 2.4, cette version ne compile qu’avec quelques modification sur une distribution récente.

Une version modifiée pour compiler sur debian jessie se trouve sur le github de Martoni. Pour l’utiliser il suffit de descendre le code avec git :

git clone git@github.com:Martoni/vhd2vl.git

Et faire un simple «make» dans le répertoire src/.

Pour convertir un fichier vhdl en verilog rien de plus simple (on pourra utiliser les exemples se trouvant dans les sources):

vhd2vl exemple.vhd > exemple.v

Le programme fonctionne plutôt bien à condition d’adapter son code vhdl de manière à générer un verilog correct.

En le testant sur mon «blinking led project» (blp), j’ai pu néanmoins constater quelques problèmes comme:

  • Support hasardeux du type CONSTANT: Le type constant est converti en un «reg» ce qui n’est pas reconnu comme une constante par les logiciels de synthèse. On doit pouvoir modifier ça simplement pour qu’il génère un «localparam» par exemple.
  • Pas de warnings sur les mots clef: Les mots clefs en vhdl ne sont pas les même qu’en verilog, vhd2vl ne râle pas quand il y a une variable en vhdl qui est un mot clef en verilog (par exemple avec le mot clef «edge»).
  • Pas de support de l’underscore ‘_’ pour les nombres. En verilog/VHDL on peut mettre des séparateur pour les milliers histoire que ça soit plus lisible 1_000_000, vhd2vl ne comprend pas.
  • Pas de support du type time (unité sec): bon ça c’est un peu tordu, car ça n’est pas synthétisable en l’état de toute manière.

Bref vhd2vl est un petit logiciel comportant peu de fichiers sources : en fait juste deux. S’il ne répond pas tout à fait à nos attentes il est très facile d’aller le modifier pour l’adapter.

Après discussion avec Larry, visiblement la version 2.4 sera la dernière car l’objectif est de l’intégrer au projet icarus verilog. Mais j’ai beau compiler la dernière version du trunk de icarus, je ne parviens pas à faire la même chose avec.

[EDIT 7 janvier 2016] Non non, vhd2vl n’est pas mort, Larry continu a le développer.

Compiler debit sous Jessie (debian)

Debit est un projet de logiciel permettant de faire du reverse sur les bitstreams des fpga Xilinx et Altera de manière à pouvoir ensuite faire de la synthèse libre.

Le projet était porté par Jean-Baptiste Note, mais le site de son projet ulogic.org reste inaccessible en permanence.

Le git du code est lui par contre accessible sur google code.

Le code n’ayant pas bougé depuis 2008 il a été nécessaire de faire quelques modification pour pouvoir compiler, ces modifications se trouvent sur le github de Martoni.

Pré-requis

Pour pouvoir compiler le projet sur Debian Jessie, il faut d’abord installer quelques packets:

sudo apt-get install xmlto xvfb valgrind glade build-essential
sudo apt-get install libgtk2.0-dev automake libcanberra-gtk-module
sudo apt-get install icoutils scrollkeeper git

Glade 2.12

Debit utilise une version antique de glade qui n’est plus disponible dans les packets debian, il faut donc l’installer à la main.

Pour cela il faut télécharger l’archive et la décompresser:

$ cd /opt/
$ wget http://ftp.gnome.org/pub/GNOME/sources/glade/2.12/glade-2.12.2.tar.gz
$ tar -zxvf glade-2.12.2.tar.gz
$ cd glade-2.12.2

Le code ne compile pas en l’état il faut modifier légèrement les includes. On peut le faire rapidement avec la commande suivante :

sed -i 's/gtkclist.h/gtk.h/g' glade/*.c
sed -i 's/gtkclist.h/gtk.h/g' glade/*.h

On peut alors le compiler et l’installer avec les commandes classiques:

./configure
make
make install
make clean

Debit

Prendre ensuite le trunk du git de martoni :

git clone git@github.com:Martoni/debit.git

Et compiler avec les commandes classique des autotools :

$ cd debit
$ ./autodo.sh
$ ./configure
$ make

Compiler Torc sous Debian Jessie

Prérequis :

sudo apt-get install libboost-all-dev

Descendre le svn (avec git c’est mieux) :

git svn clone https://svn.code.sf.net/p/torc-isi/code/trunk torc

Faire un premier «make» dans src/, ce qui va créer un fichier nommé Makefile.local. Ouvrir ce fichier et ajouter les path vers boost :

BOOST_INCLUDE_DIR = /usr/include/boost/
BOOST_LIB_DIR = /usr/lib/

Faire un make (toujours dans src/) :

$ make

La configuration converti tous les warning en erreur (-Werror), et comme il reste des warnings visiblement dans le svn on arrive pas à tout compiler. Pour compiler malgré tout, virer l’option dans le fichier src/torc/Makefile.targets  (ligne 59):

-Werror \

 

Torc est un logiciel libre permettant de générer les bitstreams pour les fpga Xilinx:

http://torc-isi.sourceforge.net/documentation.php

Compiler GHDL avec ses petites mains

GHDL est le plus avancé des simulateurs libre pour le VHDL. GHDL est déjà intégré dans de nombreuses distributions, un simple «apt-get install ghdl» fonctionne sur une ubuntu ou une debian (wheezy).

Cependant, il se peut que nous souhaitions utiliser la dernière version en date de ghdl (0.32). Il se peut aussi que ghdl ne soit pas encore intégré à notre distribution préférée (c’est le cas de Debian Jessie), auquel cas nous aurons besoin de compiler l’outil depuis les sources.

dépendances

Les paquets suivants doivent être installé au préalable :

$ apt-get install gnat mercurial

Récupérer les sources
Les sources se trouvent sur sourceforge et utilise mercurial comme gestionnaire de version:

$ cd /opt/
$ hg clone http://hg.code.sf.net/p/ghdl-updates/code ghdl-updates-code

Nous allons aussi avoir besoin des sources de gcc:

$ wget ftp://ftp.uvsq.fr/pub/gcc/releases/gcc-4.9.2/gcc-4.9.2.tar.bz2

Une fois les sources téléchargées il faut générer une archive que nous décompresserons ensuite dans les sources de gcc.

$ cd ghdl-updates-code/translate/gcc
$ ./dist.sh sources

Installation du vhdl dans gcc

On décompresse tout d’abord les archives de ghdl fraichement générée et de gcc:

$ cd /opt/
$ tar -jxvf ghdl-updates-code/translate/gcc/ghdl-0.32dev.tar.bz2
$ tar -jxvf gcc-4.9.2.tar.bz2

Puis on copie le code du plugin vhdl dans gcc

$ cp -R ghdl-0.32dev/vhdl gcc-4.9.2/gcc/

Compilation

Pour compiler il nous suffit maintenant de nous rendre dans le répertoire de gcc puis de faire un ./configure, make, make install:

$ cd gcc-4.9.2/
$ mkdir /opt/ghdl/
$ ./configure --enable-languages=vhdl --disable-bootstrap --prefix=/opt/ghdl/
make CFLAGS="-O"

L’ajout de «–prefix=/opt/ghdl» permet d’éviter de péter son installation de gcc en installant ghdl dans un autre endroit.

Pour utiliser notre version compilée de ghdl il suffit donc de l’appeler en donnant le bon path :


$ /opt/ghdl/bin/ghdl --help
usage: /opt/bin/ghdl COMMAND [OPTIONS] ...
[...]